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ABSTRACT 

 
One of the interactions that occur within 

the ecosystem is the interaction of mutualism. 
Such mutualism interactions can be modeled 
into mathematical models. Reddy (2011) study 
suggests a model of two mutually interacting 
species that assumes that each species can live 
without its mutualism partner. In fact, not all 
mutual species survive without their mutualism 
pairs. If it is assumed that the second species 
lives without its mutualism partner, the first 
species, then the natural growth rate of the 
second species population will decrease (the 
mortality rate). The purpose of this research is 
to explain the model of two mutually interacting 
species with mortality rate for the second 
species, to determine the equilibrium point and 
the type of stability, and to simulate them with 
several parameters. This research was done by 
way of literature studies. The result of this 
research is the model of two mutually 
interacting species with mortality rate for 
second species modeled using Nonlinear 
Differential Equation System. In the model, it 
was obtained 3 (three) points of equilibrium, 
with each type and type of stability investigated. 
Next up from the stability, model simulations 
were done. Based on several simulations 
conducted can be seen the value of parameters 
and initial values affect the population growth of 
both species. The interaction model of two 
mutual species will be stable if the first species 
survive and the second species over time will be 
extinct. 
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INTRODUCTION 
 

Ecology is one branch of biological 
science that studies about several populations 
in an ecosystem. One of the interactions that 
occur within the ecosystem is the interaction of 
mutualism. Such mutualism interactions can be 
modeled into mathematical models.  

In the study of Reddy (2011), the 
mathematical model is the interaction model of 
two mutual species that assumes that the 
populations of the first species with limited 
resources and for the populations of the second 
species with unlimited resources. Each species 
benefits from the interaction that occur, but the 
survival of each species does not depend on 
mutual interaction. In this case, each species 
can live without its mutualism partner. In fact, 
not all mutual species survive without their 
mutualism pairs. If it is assumed that the 
survival of the first species does not depend on 
the interaction, while the survival of the second 
species depends on the interaction of 
mutualism, in this case the mutualism pair of the 
second species is the first species. 
Consequently, if the second species live without 
a mutualism partner, then the natural growth 
rate of the second species population will 
decrease (the mortality rate). Reddy, et. al. 
(2012) later on modified the model.  

This article will explain how the 
interaction model of two mutual species with 
mortality rate for the second species, how to 
determine the equilibrium point and the type of 
stability model of the interaction of two mutual 
species with mortality rate for the second 
species, and how to make a model simulation 
with several parameters. 

 
METHOD 

 
This research was conducted by 

literature studies from various sources, both 
books and journals that support and relevant to 
the research conducted. The steps are to 
explain the formation of the model, to determine 
the equilibrium point, to investigate the local 
stability using model linearization (Jacobian 
Matrix), from the Jacobian Matrix, characteristic 
equation and eigenvalues were obtained. 
Based on the obtained eigenvalues, the type 
and type of stability can be determined. 
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LITERATURE REVIEW 
 
System of Linear and Nonlinear Differential 
Equations of First Order 

The form of a homogeneous first-order 
linear differential equation system can be 
written as follows: 

 

dt

dx
= Ax  (2) 

 
with  x = ( x1, x2, ..., xn)  Rn, 
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Given a system of first-order nonlinear 
differential equations as follows: 

dt

dx
= f (t, x)   (3) 

with  x = (x1, x2, ..., xn)  Rn and f (t, x)  
Rn. f (t, x) as a nonlinear function. [3] 
Equilibrium Point 

The definition of an equilibrium point can 
be written as follows.  
Definition 3.3.1 [4] 

Point x̂  Rn is called the equilibrium 

point of the equation (3) if  f(t, x̂ ) = 0. 

Linearization of Nonlinear Equation 
Systems 

To determine the stability of a nonlinear 
differential equation system at the equilibrium 

point ( x̂ ), the nonlinear differential equations 

system needs to be linearized using a Jacobian 
matrix. The Jacobian matrix can be written as 
follows 
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  (6) 
The Jacobian matrix will then be used to 

determine the eigenvalues of the linear 
equation system. [2] 
Eigenvalues and Eigenvectors 

The following are the definitions of 
eigenvalues and eigenvectors. 
Definition 3.5.1 [1] 
If A is nn  matrix, then the nonzero vector x 

in Rn is called the eigenvector of A. If Ax is 

scalar multiplication from x; namely, Ax = x. 

Scalar  called the eigenvalue of A and x are 

said to be a corresponding eigenvector to . 
3.5 System Stability 
Theorem 3.6.1 [9] 

Let j (j = 1, 2, ..., n) to be the eigenvalue of the 

matrix A in equation (2) and Re(j) is the real 

part from j, then the equilibrium point x̂  is said 

to be:  

(i) Stable if Re(j)  0 and at least one 

eigenvalue of the matrix A real part is zero. 

(ii) Asymptotically stable if Re(j) < 0. 

(iii) Unstable if there is an eigenvalue of the 
matrix A with positive real part. 

 
 

Table 1. Linear System Stability [5] 

Eigenvalues Type of Equilibrium Point  Stability 

021  
 

1 = 2 > 0 
Node Unstable 

1 < 2 < 0 

1 = 2 < 0 Node Asymptotically stable 

12 0    Saddle Unstable 

iba=21,  

0a  

0a
 

Spiral 
 

Unstable 
Asymptotically stable 

ib=21,  

(Purely Imaginary) 
Center Stable but asymptotically unstable 
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RESULT DAN DISCUSSION 
 
Models of Two Mutually Interacting Species 
With Mortality Rate for The Second Species 

Let N1(t) denote the number of the first 
species in the population at the time t and N2(t) 
denote the number of the second species in the 
population at the time t. The assumptions used 
to build the model as follows: 
1. The natural growth in the first species 

population in the absence of the second 
species will increase exponentially. 

2. There is interaction among the first species 
competing for limited resources. 

3. The mutualism pair of the second species 
is the first species. 

4. The natural growth of the second species 
population in the absence of a mutualism 
partner will decrease exponentially. 

5. The source of food and living space of the 
second species depends on its mutualism 
partner, the first species, resulting in the 
interaction between the first species and 
the second species. 

6. Interaction that occurs between the first 
species and the second species provide 
benefits for each species. 

Based on the above assumptions, a 
model of two mutually interacting species with 
mortality rate for the second species is as 
follows. 
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With 0 ≤  𝑎1  ≤ 1, 0 ≤  𝑎2  ≤ 1  
0 ≤  𝛼11  ≤ 1, 0 ≤  𝛼12  ≤ 1, and  0 ≤  𝛼21  ≤ 1 

 
Some parameters used in the model are 

as follows. 
𝑎1 = the natural growth rate of the first species 

population. 
𝑎2 = the natural mortality rate of the second 

species. 
𝛼11 = the rate of the first species population 

decline due to interaction in the first 
species in the first species population. 

𝛼12 = the growth rate of the first species 
population because it interacts with the 
second species. 

𝛼21 = the rate of population growth of the second 
species by interacting with the first species. 

 
The Model Equilibrium Point 

By the definition 3.3.1, Model [7] must 

meet  
𝑑𝑁1

𝑑𝑡
= 0 and 

𝑑𝑁2

𝑑𝑡
= 0  which result three 

equilibrium points on the model of two mutually 
interacting species are obtained namely 
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4.3 System Stability 
System Stability at Equilibrium Point I 

Jacobian matrix at equilibrium point 

( ) ( )00,, 21 =NN ˆˆ  is 
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The characteristic equation of (8) is as follows. 

( )( ) 0
21

=−−−  aa       (9)                                                           

From equation (9) is obtained 
1 1 0a =   and 

2 2 0a = −  . 

Because  and 02  , then based on 

Theorem 3.6.1 The model is unstable at the 

point ( )00,  and is a saddle point type. 

Simulation of the equilibrium point can be seen 
in the figure 1. From this point it cannot be 
concluded, because the equilibrium point is 
unstable. 

1. System Stability at Equilibrium Point II 
Jacobian matrix at equilibrium point 
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The characteristic equation of (10) is as follows. 
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From equation (11) is obtained 1  and 

2  as follows. 

1 1 0a = −  , or 2
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Based 
1  and

2  above, then we can 

know the stability of the system at the 

equilibrium point 




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a  are as follows. 

(i) If 
21
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aa
 , then 01  and 2 > 0, so 

that by Theorem 3.6.1 Model (7) is 
unstable at this equilibrium point and from 
Table 1 the type is of saddle point. The 
simulation of this equilibrium point can be 
seen in Figure 2. 

(ii) If 
21

2

11

1



aa
  then 01  dan 2 < 0, so 

that based on Theorem 3.6.1 Model (7) is 
asymptotically stable at this point of 
equilibrium and from Table 7 the type is of 
node point. The simulation of this 
equilibrium point can be seen in Figure 3. 
This situation explains that the first species 
population will survive in its habitat while 
the second species will be destroyed over 
time. 

 
2. System Stability at Equilibrium Point III 

Jacobian matrix at equilibrium point 
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The characteristic equation of (12) is as 

follows. 
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The discriminant (D) of equation (13) is 
as follows. 
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Consequently D > 0, so equation (13) has 
two distinct real roots. The roots of equation (13) 
are as follows. 
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Based on Theorem 3.6.1 then Model (7) 
is unstable at this equilibrium point and the type 
of equilibrium point is the saddle point. The 
simulation of this equilibrium point can be seen 
in Figure 4. This shows that both species cannot 
be explained through this point. 

4.4 Simulation 
Table 2. Initial value and some parameter values  

Equilibrium Point N1(t=0) N2(t=0) 1
a  11

  
12

  2
a  21

  
I 70 10 0.5 0.004 0.002 0.3 0.003 

II 
Case 1 50 1 0.3 0.01 0.001 0.2 0.01 
Case 2 50 1 0.3 0.03 0.01 0.1 0.006 

III 200 10 0.6 0.004 0.002 0.4 0.002 

 
 
 
 
 
 
 

 
 
 
 
 
 

Figure 1. Simulation of Equilibrium Point I                         Figure 2. Simulation of Equilibrium Point II on 
Case 1 
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             N2 

             N1 

             N2 
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Figure 3. Simulation of Equilibrium Point II on Case 2          Figure 4. Simulation of Equilibrium Point III 
 

CONCLUSIONS 
 

The conclusion obtained from this 
research is the interaction model of two mutual 

species can be written  
𝑑𝑁1

𝑑𝑡
= 𝑎1𝑁1 −  𝛼11𝑁1

2 +

 𝛼12𝑁1𝑁2  and  
𝑑𝑁2

𝑑𝑡
= −𝑎2𝑁2 +  𝛼21𝑁1𝑁2. 

In the interaction model of two mutual 
species three equilibrium points are obtained 

(0,0), (
𝑎1

𝛼11
, 0) (

𝑎2

𝛼21
,

𝑎2𝛼11 − 𝑎1𝛼21

𝛼12𝛼21
).  

The stability of the system at the 
equilibrium point in the interaction model of two 
mutual species is the unstable system at the 
equilibrium point (0,0) and the type of 

equilibrium point is the saddle point. If 
𝑎1

𝛼11
>

𝑎2

𝛼21
, 

then the system is unstable at the equilibrium 

point (
𝑎1

𝛼11
, 0), and the type of point of the 

equilibrium is the saddle point. 

If 
𝑎1

𝛼11
>

𝑎2

𝛼21
 then the system is 

asymptotically stable at the equilibrium point 

(
𝑎1

𝛼11
, 0), and the type of equilibrium point is the 

node point. 
The system is unstable at the equilibrium 

point (
𝑎2

𝛼21
,

𝑎2𝛼11 − 𝑎1𝛼21

𝛼12𝛼21
) and the type of point of 

the equilibrium is the saddle point. 
Based on several simulations conducted 

can be seen the value of parameters and initial 
values affect the population growth of both 
species. The interaction model of two mutual 
species will be stable if the first species survive 
and the second species over time will be extinct. 
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