Changes in the chemical characteristics of acid sulfate soil applied to oyster mushroom baglog waste compost
Main Article Content
Abstract
Acid sulfate soils are one of the potential lands for agriculture with appropriate treatment. The main problem in these soils is the chemical properties, which is high in acidity and limited nutrients availability and Fe and Al toxicity. Amelioration techniques are needed to improve the chemical properties of the soil, which is oyster mushroom baglog waste compost. This research aims to study the effect of oyster mushroom baglog waste (OMBW) compost to soil chemical properties, also to know the best dosage which affects chemical properties. The research was conducted at the greenhouse of the Agroecotechnology Department and the Laboratory of the Soil Department, Faculty of Agriculture, Lambung Mangkurat University, Banjarbaru. The research was started from August-October 2020. One-factor completely randomized design (CRD) with five treatments and five replications was used, the b0 treatment was not OMBW compost, b1 was 5 t ha-1, b2 was 10 t ha-1, b3 was 15 t ha-1, and b4 was 20 t ha-1. The application of the OMBW compost significantly affected the soil pH and decreased soluble-Fe and Al, but did not significantly affect the Eh value at 2 WAA (Week After Application). The best concentration of dose of OMBW compost was 10 t ha-1 which improved soil pH, decreased soluble-Fe and Al.
Downloads
Article Details
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
TROPICAL WETLAND JOURNAL is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
References
Agegnehu, G., Erkossa, T., & Yirga, C. (2019). Soil Acidity Management. Ethiopa: Ethiopian Institute of Agricultural Research (EIAR).
Agricultural Office of South Kalimantan. (2013). Laporan Tahunan Dinas Pertanian TPH 2009. Dinas Pertanian Kalimantan Selatan, Banjarbaru.
Arotaa, A. N., Olfie B. L. S., & Katiandagho, T. M. (2016). Hubungan antara luas lahan pertanian dengan produk domestik regional bruto sektor pertanian di Kota Tomohon. Agri-Sosioekonomi, 12(1): 13-28. doi:10.35791/agrsosek.12.1.2016.11185.
Audebert, A. (2006). Iron Toxicity in Rice-Based System in West Africa. Pretoria: Africa Rice Center (WARDA).
Bukhari, S. & Khan, M. H. (2009). Spectrophotometric determination of microamounts of thorium with thorin in the presence of Cetylpyridinium Chloride as surfactant in Perchloric Acid. Journal of Radioanalytical and Nuclear Chemistry, 301(3): 703-709.
Cyio, M. B. (2008). Efektivitas bahan organik dan tinggi genangan terhadap perubahan Eh, pH, dan status Fe, P, Al terlarut pada tanah Ultisol. J. Agroland, 15(4): 257-263.
Dada, O. A., & Aminu, J. A. (2013). The performance of lowland rice (Oryza sativa L.) cultivar on iron toxic soil augmented with compost. Journal of Stress Physiology and Biochemistry, 9(4): 207- 218.
Das, S. K., & Das, S. K. (2015). Acid Sulphate Soil: management strategy for soil health and productivity. Bul. Popular Kheti, 3(2): 2-7.
Duncan, D. B. (1995). Multiple range and multiple f-tests. Biometrics, 11: 1-42. doi:10.2307/3001478.
Eusterhues, K., Hädrich A., Neldhardt J., Küsel K., Keller, T. F., Jandt, K. D., & Totsche, K. U. (2014). Reduction of ferrihydrite with adsorbed and coprecipitated organik matter: microbial reduction by Geobacter bremensis vs abiotic reduction by Na-dithionite. Biogeosciences, 11: 4953–4966.
Fahmi, A., & Khairullah, I. (2018). Ameliorasi Tanah Sulfat Masam untuk Budidaya Padi. Banjarbaru: Balai Penelitian Pertanian Lahan Rawa.
Wright, R. J., Baligar, V. C., & Murrmann, R. P. (1991). Plant-soil interactions at low pH. USA: Beckley West Virginia.
Hunaepi, Dharmawibawa, I. D., Samsuri, T., Mirawati, B., & Asy’ari, M. (2018). Pengolahan limbah baglog jamur tiram menjadi pupuk organik komersil. Jurnal SOLMA, 7(2): 277-288.
Ifansyah, H. (2013). Soil pH and solubility of aluminum, iron, and phosphorus in Ultisols: the roles of Humic Acid. J. Trop. Soils, 18(3): 203-208.
Jumar & Saputra, R. A. (2020). Optimalisasi Pemanfaatan Limbah Baglog Jamur Tiram untuk Perbaikan Sifat Kimia Tanah Sulfat Masam Hubungannya dengan Pertumbuhan, Serapan Hara, dan Produksi Padi. Laporan Penelitian. DIPA ULM 2020.
Jumar, Saputra, R. A., & Putri, K. A. (2021). Kualitas kompos limbah baglog jamur tiram. Prosiding Seminar Nasional Lingkungan Lahan Basah, 6(1). Lembaga Penelitian dan Pengabdian Kepada Masyarakat, Universitas Lambung Mangkurat.
Kurniawati, S., Djarot, & Sugiarso. (2016). Perbandingan kadar Fe (II) dalam tablet penambah darah secara spektrofotometri uv-vis yang dipreparasi menggunakan metode destruksi basah dan destruksi kering. Jurnal Sains dan Seni ITS, 5(1).
Neves, A. C., da Costa, P., de Oliveira Silva, C. A., Pereira, F. R., & Mol, M. P. G. (2021). Analytical methods comparison for pH determination of composting process from green wastes. Environmental Engineering and Management Journal, 20(1): 133–139. doi:10.30638/eemj.2021.014.
Nozoe, T., Agbisiti R., Fukuta, Y., Rodriguez, R., & Yanagihara, S. (2008). Characteristics of iron toxicity in rice (Oryza sativa L.) under different pottasium nutrition. Asian J. Plant Sci., 7: 251-259.
Putri, K. A., Jumar, & Saputra R. A. (2022). Evaluasi kualitas kompos limbah baglog jamur tiram
Trop. Wetland J. 20XX: 8(1): 8-15 15
berbasis standar nasional Indonesia dan uji perkecambahan benih pada tanah sulfat masam.
Agrotechnology Research Journal, 6(1): 8–15. doi:10.20961/agrotechresj.v6i1.51272. Rabenhorst, M. C., Hively, W. D., & James, B. R. (2009). Measurements of soil redox potential. Soil
Science Society of America Journal, 73(2): 668–674. doi:10.2136/sssaj2007.0443.
Salim, F. U. (2015). Penilaian Kualitas Kompos dari Bahan Brangkasan Jagung dan Limbah Baglog Jamur serta Peranan Aktivator Pemercepat Pengomposan. Skripsi. Bogor: Fakultas Pertanian
Institut Pertanian Bogor.
Saputra, R. A. (2016). Pengaruh Aplikasi Abu Terbang Batubara pada Jenis Sawah yang Berbeda
Terhadap Perubahan Sifat Kimia Tanah, Pertumbuhan, dan Produksi Padi. Tesis. Banjarbaru:
Fakultas Pertanian Pascasarjana Universitas Lambung Mangkurat.
Saputra, R. A., & Sari, N. N. (2021). Ameliorant engineering to elevate soil pH, growth, and productivity
of paddy on peat and tidal land. IOP Conf. Ser.: Earth Environmental Sciences. 648(012183): 1-8.
doi:10.1088/1755-1315/648/1/012183.
Setyorini, D., Saraswati, R., & Anwar, E. K. (2006). Pupuk Organik dan Pupuk Hayati. Bogor: Balai
Penelitian Tanah.
Statistics of Kalimantan Selatan Province. (2013). Kalimantan Selatan dalam Angka 2012. Retrieved
September 1, 2020, from https://kalsel.bps.go.id/publication/2012/10/18/a94db3b2a2b0e5ce2d91495e/kalimantan- selatan-dalam-angka-2012.html.
Statistics of Kalimantan Selatan Province. (2018). Luas Penggunaan Lahan Pertanian di Kalimantan Selatan. Retrieved September 1, 2020, from https://kalsel.bps.go.id/statictable/2017/02/07/775/luas-wilayah-menurut-jenis- penggunaan-tanah-tiap-kabupaten-kota-tahun-2011.html.
Susilawati & Raharjo. (2010). Petunjuk Teknis Budidaya Jamur Tiram (Pleourotusostreatus-var florida) yang Ramah Lingkungan (Materi Pelatihan Agribisnis bagi KMPH). Palembang: Balai Pengkajian Teknologi Pertanian Sumatera Selatan.
Tan, K. H. (2011). Principles of Soil Chemistry Fourth Edition. Florida: CRC Press.
Ure, M., Thomas, R., & Littlejohn, D. (1993). Ammonium acetate extracts and their analysis for the speciation of metal ions in soils and sediments. International Journal of Environmental
Analytical Chemistry, 51(1–4), 65–84. doi:10.1080/03067319308027612.
Wijanarko, A., & Taufiq, A. (2004). Pengelolaan kesuburan lahan kering masam untuk tanaman kedelai.
Bul. Palawija, 7: 39-50.
Yu, T. (1985). Physical chemistry of Paddy Soils. Beijing: Science Press.
Yuniarti, A., Solihin E., & Putri, A. T. A. (2020). Aplikasi pupuk organik dan N, P, K terhadap pH tanah, P-
tersedia, serapan P, dan hasil padi hitam (Oryza sativa L.) pada inceptisol. Jurnal Kultivasi, 19(1): 1040-1046.