ROLE OF PURUN TIKUS IN VERTICAL SUBSURFACE FLOW CONSTRUCTED WETLAND IN TREATING MANGANESE (Mn) FROM COAL MINE DRAINAGE
Main Article Content
Abstract
Constructed wetland (CW) is one of the passive methods used to process coal mine drainage. In this study, we used vertical (VF) subsurface flow (SSF) constructed wetland (CW) with purun tikus (Eleocharis dulcis). The purpose of the study was to assess the role of purun tikus in increasing the efficiency of constructed wetland to remove Mn from Coal Mine Drainage. The constructed wetland operated under batch hydraulic loading regime. The results showed that the efficiency of the VF-SSFCW System without purun tikus was 15.53% and VF-SSFCW with purun tikus 78.94%.
Downloads
Download data is not yet available.
Article Details
How to Cite
Prihatini, N., Nirtha, I., & Iman, M. (2016). ROLE OF PURUN TIKUS IN VERTICAL SUBSURFACE FLOW CONSTRUCTED WETLAND IN TREATING MANGANESE (Mn) FROM COAL MINE DRAINAGE. TROPICAL WETLAND JOURNAL, 2(1), 1 - 7. https://doi.org/10.20527/twj.v2i1.18
Section
Articles
TROPICAL WETLAND JOURNAL is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
References
Briat, J. F. (2007). "Iron Dynamics in Plants." Advances in Botanical Research 46: 137-180.
Briat, J. F. and S. Lobréaux (1997). "Iron transport and storage in plants." Trends in Plant Science2(5): 187-193.
Coats, K. S. C., S. B. Pruett, et al. (1994). "Bovine immunodeficiency virus: incidence of infection in Mississippi dairy cattle." Veterinary Microbiology42: 180-189.
Coulton, R., C. Bullen, et al. (2003). "The design and optimization of active mine water treatment plants." Land Contam. Reclam.11(3): 273-279.
Flach, M. and F. Rumawas (1996). "Plants Yielding Non-Seed Carbohydrates." Plant Resources of South-East Asia (PROSEA)9: 97-100.
Fritioff, Å. and M. Greger (2006). "Uptake and distribution of Zn, Cu, Cd, and Pb in an aquatic plant Potamogeton natans." Chemosphere63: 220-227.
Fritioff, Å. and M. Greger (2007). "Fate of cadmium in Elodea canadensis." Chemosphere67: 365-375.
Fritioff, Å., L. Kautsky, et al. (2005). "Influence of temperature and salinity on heavy metal uptake by submersed plants." Environmenal Pollution133: 265-274.
Gambrell, R. P. (1994). "Trace and toxic metals in wetlands a review." Journal of Environmental Quality23: 883- 889.
Hallberg, K. B. and D. B. Johnson (2005). "Microbiology of a wetland ecosystem constructed to remediate mine drainage from a heavy metal mine." Sci. Total Environ.338(1-2): 53-66.
Indrayati, L. (2011). "Purun Tikus Potentially Fix Water Quality in Tidal Swamp." Badan Litbang Pertanian Edisi 6-12 April 2011 No. 3400 Tahun XLI.
Jeong, J. and E. L. Connolly (2009). "Iron uptake mechanisms in plants: Functions of the FRO family of ferric reductases." Plant Science176 (6): 709-714.
Johnson, D. B. and K. B. Hallberg (2002). "Pitfalls of passive mine water treatment." Reviews Environ Sci Bio/Technol.1(4): 335–343.
Johnson, D. B. and K. B. Hallberg (2003). "The microbiology of acidic mine waters." Res Microbiol.154(7): 466 – 473.
Kadlec, R. H. and R. L. Knight (1996). Treatment Wetlands. Boca Raton, Florida, USA, CRC Press, Inc.
Kim, S. A. and M. L. Guerinot (2007). "Mining iron: Iron uptake and transport in plants." FEBS Letters581(12): 2273-2280.
Lesage, E., D. P. L. Rousseau, et al. (2007). "Accumulation of metals in a horizontal subsurface flow constructed wetland treating domestic wastewater in Flanders, Belgium." Science of the Total Environment380: 102 - 115.
Mitsch, W. J. and K. M. Wise (1998). "Water Quality, Fate of Metals, and Predictive Model Validation of Constructed Wetland Treating Acid Mine Drainage." Wat. Res. Vol. , No. 6, pp. , 199832(6): 1888-1900.
Munawar, A. (2007). " Utilization of local biological resources in the passive tretment method of acid mine drainage: Constructed Wetlands." Journal of Soil and Environment Sciences)7(1): 31-42.
Noor, M. (2004). Land Swamp, Nature and Management of Troubled Acid Sulfate Soils. Jakarta, PT Raja Grafindo Persada.
Palmer, C. M. and M. L. Guerinot (2009). "Facing the challenges of Cu, Fe and Zn homeostasis in plants." Nature Chemical Biology5: 333 - 340.
Prihatini, N. S. (2015). "Iron (Fe) Bio-concentration in Purun Tikus (Eleocharis dulcis) planted on constructed wetland treating Coal Acid Mine drainage " This article was presented at the International Seminar: “Forest Rehabilitation of Post Mining Areas: Mitigating The Ecological and Socio-Economic Impacts of Mining”. Banjarbaru, 15-16 September 2015.
Prihatini, N. S. (2015). "Performance of The Horizontal Subsurface-flow Constructed Wetland With Different Operational Procedures." International Journal of Advances in Engineering & Technology7 (6): 1620-1629.
Prihatini, N. S. (2015). A Study of Iron (Fe) Uptake by Purun Tikus (Eleocharis dulcis) from Acid Mine Drainage in Subsurface Flow Constructed Wetland. International Conference: Natural, Mathematical and Environmental Sciences. Banjarbaru, Indonesia.
Risnawati, I. and T. P. Damanhuri (2010). "Metal removal in Leacheate using Constructed Wetland." Environmental Engineering Department, Faculty of Civil and Environmental Engineering, Institut Teknologi Bandung.
Samiotakis, M. and S. D. Ebbs (2004). "Possible evidence for transport of an iron cyanide complex by plants." Environmental Pollution127(2): 169-173.
Sobolewski, A. (1999). "A review of processes responsible for metal removal in wetlands treating contaminated mine drainage." International Journal of Phytoremediation1 (1): 19-51.
Solti, A., K. Kovács, et al. (2012). "Uptake and incorporation of iron in sugar beet chloroplasts." Plant Physiology and Biochemistry52(March): 91-97.
Vardanyan, L. G. and B. S. Ingole (2006). "Studies on heavy metal accumulation in aquatic macrophytes from Sevan (Armenia) and Carambolim (India) lake systems." Environment International32: 208-218.
Vile, M. A. and R. K. Wieder (1993). "Alkalinity generation by Fe(III) reduction versus sulfate reduction in wetlands constructed for acid mine drainage treatment." Water, Air, and Soil Pollution69(3-4): 425-441.
Vymazal, J. (2003). Distribution of iron, cadmium, nickel and lead in a constructed wetland receiving municipal sewage. Wetlands - Nutrients, Metals and Mass Cycling. J. E. Vymazal: 341-363.
Vymazal, J. (2005). "Removal of heavy metals in a horizontal sub-surface flow constructed wetland." Journal of Environmental Science and Health 40A: 1369-1379.
Wiessner, A., P. Kuschk, et al. (2006). "Effectiveness of Various Small-Scale Constructed Wetland Designs for the Removal of Iron and Zinc from Acid Mine Drainage under Field Conditions." Engineering in Life Science6(6): 548-592.
Wood, T. S. and M. L. Shelley (1999). "A dynamic model of bioavailability of metals in constructed wetland sediments." Ecological Engineering12: 231-252.
Yoshida, K. and T. Negishi (2013). "The identification of a vacuolar iron transporter involved in the blue coloration of cornflower petals." Phytochemistry94(Oct.): 60-67.
Briat, J. F. and S. Lobréaux (1997). "Iron transport and storage in plants." Trends in Plant Science2(5): 187-193.
Coats, K. S. C., S. B. Pruett, et al. (1994). "Bovine immunodeficiency virus: incidence of infection in Mississippi dairy cattle." Veterinary Microbiology42: 180-189.
Coulton, R., C. Bullen, et al. (2003). "The design and optimization of active mine water treatment plants." Land Contam. Reclam.11(3): 273-279.
Flach, M. and F. Rumawas (1996). "Plants Yielding Non-Seed Carbohydrates." Plant Resources of South-East Asia (PROSEA)9: 97-100.
Fritioff, Å. and M. Greger (2006). "Uptake and distribution of Zn, Cu, Cd, and Pb in an aquatic plant Potamogeton natans." Chemosphere63: 220-227.
Fritioff, Å. and M. Greger (2007). "Fate of cadmium in Elodea canadensis." Chemosphere67: 365-375.
Fritioff, Å., L. Kautsky, et al. (2005). "Influence of temperature and salinity on heavy metal uptake by submersed plants." Environmenal Pollution133: 265-274.
Gambrell, R. P. (1994). "Trace and toxic metals in wetlands a review." Journal of Environmental Quality23: 883- 889.
Hallberg, K. B. and D. B. Johnson (2005). "Microbiology of a wetland ecosystem constructed to remediate mine drainage from a heavy metal mine." Sci. Total Environ.338(1-2): 53-66.
Indrayati, L. (2011). "Purun Tikus Potentially Fix Water Quality in Tidal Swamp." Badan Litbang Pertanian Edisi 6-12 April 2011 No. 3400 Tahun XLI.
Jeong, J. and E. L. Connolly (2009). "Iron uptake mechanisms in plants: Functions of the FRO family of ferric reductases." Plant Science176 (6): 709-714.
Johnson, D. B. and K. B. Hallberg (2002). "Pitfalls of passive mine water treatment." Reviews Environ Sci Bio/Technol.1(4): 335–343.
Johnson, D. B. and K. B. Hallberg (2003). "The microbiology of acidic mine waters." Res Microbiol.154(7): 466 – 473.
Kadlec, R. H. and R. L. Knight (1996). Treatment Wetlands. Boca Raton, Florida, USA, CRC Press, Inc.
Kim, S. A. and M. L. Guerinot (2007). "Mining iron: Iron uptake and transport in plants." FEBS Letters581(12): 2273-2280.
Lesage, E., D. P. L. Rousseau, et al. (2007). "Accumulation of metals in a horizontal subsurface flow constructed wetland treating domestic wastewater in Flanders, Belgium." Science of the Total Environment380: 102 - 115.
Mitsch, W. J. and K. M. Wise (1998). "Water Quality, Fate of Metals, and Predictive Model Validation of Constructed Wetland Treating Acid Mine Drainage." Wat. Res. Vol. , No. 6, pp. , 199832(6): 1888-1900.
Munawar, A. (2007). " Utilization of local biological resources in the passive tretment method of acid mine drainage: Constructed Wetlands." Journal of Soil and Environment Sciences)7(1): 31-42.
Noor, M. (2004). Land Swamp, Nature and Management of Troubled Acid Sulfate Soils. Jakarta, PT Raja Grafindo Persada.
Palmer, C. M. and M. L. Guerinot (2009). "Facing the challenges of Cu, Fe and Zn homeostasis in plants." Nature Chemical Biology5: 333 - 340.
Prihatini, N. S. (2015). "Iron (Fe) Bio-concentration in Purun Tikus (Eleocharis dulcis) planted on constructed wetland treating Coal Acid Mine drainage " This article was presented at the International Seminar: “Forest Rehabilitation of Post Mining Areas: Mitigating The Ecological and Socio-Economic Impacts of Mining”. Banjarbaru, 15-16 September 2015.
Prihatini, N. S. (2015). "Performance of The Horizontal Subsurface-flow Constructed Wetland With Different Operational Procedures." International Journal of Advances in Engineering & Technology7 (6): 1620-1629.
Prihatini, N. S. (2015). A Study of Iron (Fe) Uptake by Purun Tikus (Eleocharis dulcis) from Acid Mine Drainage in Subsurface Flow Constructed Wetland. International Conference: Natural, Mathematical and Environmental Sciences. Banjarbaru, Indonesia.
Risnawati, I. and T. P. Damanhuri (2010). "Metal removal in Leacheate using Constructed Wetland." Environmental Engineering Department, Faculty of Civil and Environmental Engineering, Institut Teknologi Bandung.
Samiotakis, M. and S. D. Ebbs (2004). "Possible evidence for transport of an iron cyanide complex by plants." Environmental Pollution127(2): 169-173.
Sobolewski, A. (1999). "A review of processes responsible for metal removal in wetlands treating contaminated mine drainage." International Journal of Phytoremediation1 (1): 19-51.
Solti, A., K. Kovács, et al. (2012). "Uptake and incorporation of iron in sugar beet chloroplasts." Plant Physiology and Biochemistry52(March): 91-97.
Vardanyan, L. G. and B. S. Ingole (2006). "Studies on heavy metal accumulation in aquatic macrophytes from Sevan (Armenia) and Carambolim (India) lake systems." Environment International32: 208-218.
Vile, M. A. and R. K. Wieder (1993). "Alkalinity generation by Fe(III) reduction versus sulfate reduction in wetlands constructed for acid mine drainage treatment." Water, Air, and Soil Pollution69(3-4): 425-441.
Vymazal, J. (2003). Distribution of iron, cadmium, nickel and lead in a constructed wetland receiving municipal sewage. Wetlands - Nutrients, Metals and Mass Cycling. J. E. Vymazal: 341-363.
Vymazal, J. (2005). "Removal of heavy metals in a horizontal sub-surface flow constructed wetland." Journal of Environmental Science and Health 40A: 1369-1379.
Wiessner, A., P. Kuschk, et al. (2006). "Effectiveness of Various Small-Scale Constructed Wetland Designs for the Removal of Iron and Zinc from Acid Mine Drainage under Field Conditions." Engineering in Life Science6(6): 548-592.
Wood, T. S. and M. L. Shelley (1999). "A dynamic model of bioavailability of metals in constructed wetland sediments." Ecological Engineering12: 231-252.
Yoshida, K. and T. Negishi (2013). "The identification of a vacuolar iron transporter involved in the blue coloration of cornflower petals." Phytochemistry94(Oct.): 60-67.